Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Journal
Document Type
Year range
1.
Matter ; 5(12): 4347-4362, 2022 Dec 07.
Article in English | MEDLINE | ID: covidwho-2031551

ABSTRACT

Respiratory infectious diseases (H1N1, H5N1, COVID-19, etc.) are pandemics that can continually spread in the air through micro-droplets or aerosols. However, the detection of samples in gaseous media is hampered by the requirement for trace amounts and low concentrations. Here, we develop a wearable bioelectronic mask device integrated with ion-gated transistors. Based on the sensitive gating effect of ion gels, our aptamer-functionalized transistors can measure trace-level liquid samples (0.3 µL) and even gaseous media samples at an ultra-low concentration (0.1 fg/mL). The ion-gated transistor with multi-channel analysis can respond to multiple targets simultaneously within as fast as 10 min, especially without sample pretreatment. Integrating a wireless internet of things system enables the wearable mask to achieve real-time and on-site detection of the surrounding air, providing an alert before infection. The wearable bioelectronic masks hold promise to serve as an early warning system to prevent outbreaks of respiratory infectious diseases.

SELECTION OF CITATIONS
SEARCH DETAIL